
© 2011 IBM Corporation

DB2 for Linux, UNIX and Windows
Query Access Plan Stability

John Hornibrook
IBM Canada

© 2011 IBM Corporation10

Best practices for writing good SQL

• Avoid complex expressions in search conditions
• Avoid join predicates on expressions

• Avoid expressions over columns in local predicates

• Avoid data type mismatches on join columns

• Avoid non-equality join predicates

• Avoid unnecessary outer joins

• Use OPTIMIZE FOR N ROWS clause with FETCH FIRST N ROWS
ONLY clause

• If you are using the star schema join, ensure your queries fit the
required criteria

• Avoid redundant predicates

• Refer to:
• The DB2Night Show #52: Writing Optimized DB2 LUW SQL Queries

• http://www.dbisoftware.com/blog/db2nightshow.php?id=268
• Best Practices: Writing and Tuning Queries for Optimal Performance

• http://www.ibm.com/developerworks/data/bestpractices/querytuning/

© 2011 IBM Corporation12

Proper system configuration

• Additional considerations:
• Consider using constraints to improve query optimization

• Allows more semantic query rewrites

• Choose the best optimization class for your workload

• Default is 5

• 0,1,2,3,5,7 and 9 available

• Certain DB2 registry variables can provide improved optimization

• See http://publib.boulder.ibm.com/infocenter/db2luw/v9r7/topic/com.ibm.db2.luw.admin.regvars.doc/doc/r0005664.html

© 2011 IBM Corporation17

So how do we fix query B?

• Notice the query is over a star schema

• There is often:

• Skew in the fact table foreign keys

• Many more primary keys than foreign keys

• Statistical views will allow the optimizer to
see these characteristics

SELECT CATEGORY_DESC, SUM(PERCENT_DISCOUNT),
SUM(EXTENDED_PRICE),

SUM(SHELF_COST_PCT_OF_SALE)
FROM PERIOD, DAILY_SALES, PRODUCT, STORE,

PROMOTION
WHERE PERIOD.PERKEY=DAILY_SALES.PERKEY AND
PRODUCT.PRODKEY=DAILY_SALES.PRODKEY AND
STORE.STOREKEY=DAILY_SALES.STOREKEY AND
PROMOTION.PROMOKEY=DAILY_SALES.PROMOKEY AND
CALENDAR_DATE BETWEEN '04/01/2004' AND

'04/14/2004' AND
STORE_NUMBER='01' AND
PROMODESC = 'Web' AND
PACKAGE_SIZE = '16 OZ' AND
SUB_CATEGORY = 747
GROUP BY CATEGORY_DESC ;

Query B

custkey

name

address

promokey

promotype

promodesc

perkey

year

month

prodkey

category

upc_number

storekey

storenumber

region

ProductCustomer

Promotion

perkey

prodkey

storekey

promokey

custkey

quantity_sold

price

cost

Period

Store

Daily Sales

© 2011 IBM Corporation18

Fixing query B1

• A simple approach for statistical views in a star schema*:
• Create a statistical view for each dimension-fact join

• Limit to dimensions with:

• Skew in the fact table foreign key columns

• Many more dimension ids than exist in fact table

• Correct for data correlation between columns
PACKAGE_SIZE = '16 OZ' AND
SUB_CATEGORY = 747

• PACKAGE_SIZE has 3680 distinct values
• SUB_CATETORY has 160 distinct values
• There are 5000 distinct combinations
• The optimizer thinks there are 3680*160 = 588800 !
• Collect column group statistics on the PRODUCT table

*Statistical views are very general and can be used for many types of schemas and queries

© 2011 IBM Corporation19

Fixing query B1 with statistical views
Create a statistical view for:

(store - daily_sales)

(product - daily_sales)

(period - daily_sales)

Include all dimension columns

Don’t need to include fact table columns

CREATE VIEW DB2DBA.SV_STORE AS
(SELECT S.*
FROM STORE S, DAILY_SALES F
WHERE S.STOREKEY = F.STOREKEY)

CREATE VIEW DB2DBA.SV_PRODUCT AS

(SELECT P.*

FROM PRODUCT P, DAILY_SALES F

WHERE S.PRODKEY = F.PRODKEY)

CREATE VIEW DB2DBA.SV_PERIOD AS

(SELECT P.*

FROM PERIOD P, DAILY_SALES F

WHERE S.PERKEY = F.PERKEY)

© 2011 IBM Corporation20

Fixing query B1 with statistical views

Gather statistics for the statistical views:

Enable statistical views for query optimization

ALTER VIEW DB2DBA.SV_STORE ENABLE QUERY OPTIMIZATION
ALTER VIEW DB2DBA.SV_PRODUCT ENABLE QUERY OPTIMIZATION
ALTER VIEW DB2DBA.SV_PERIOD ENABLE QUERY OPTIMIZATION

RUNSTATS ON TABLE DB2DBA.SV_STORE WITH DISTRIBUTION
RUNSTATS ON TABLE DB2DBA.SV_PRODUCT WITH DISTRIBUTION
RUNSTATS ON TABLE DB2DBA.SV_PERIOD WITH DISTRIBUTION

© 2011 IBM Corporation21

Fixing query B1 with a column group statistic

• Note the nested parentheses

• Now query B and B1 run in 10s !!
• Previously B was 15s and B1 was 500s

RUNSTATS ON TABLE DB2INST1.PRODUCT ON ALL COLUMNS
AND COLUMNS ((PACKAGE_SIZE, SUB_CATEGORY))
WITH DISTRIBUTION
AND SAMPLED DETAILED INDEXES ALL

© 2011 IBM Corporation29

Access plan stability

• Ability to alter a package to specify:

• Access plan reuse option (APREUSE)

ALTER PACKAGE DB2USER.EMPADMIN APREUSE

REBIND DB2USER.EMPADMIN

• Optimization profile

ALTER PACKAGE DB2USER.EMPADMIN
OPTIMIZATION PROFILE DB2USER.JOINHINT

• Immediately affects subsequent dynamic SQL for that
package

• Affects static SQL on next REBIND

© 2011 IBM Corporation32

Optimization profiles

• Mechanism to control statement optimization

• Can control both query rewrite optimization and access path optimization

• Sets of explicit optimization guidelines (DML statements)

• “For app1.0, only consider routing to MQTs: Newt.AvgSales and
Newt.SumSales”

• “Use index ISUPPKEY to access SUPPLIERS in the subquery of query
9”

• Can be put into effect without editing application code

• Compose optimization profile, add to DB, rebind targeted packages

• Should only be used after all other tuning options exhausted

• Available since DB2 9

© 2011 IBM Corporation33

Optimization profiles: anatomy

• XML document
• Elements and attributes understood as explicit optimization

guidelines

• Composed and validated with Current Optimization Profile Schema
(COPS)

• sqllib/misc/DB2OptProfile.xsd
• Profile Header (exactly one)

• Meta data and processing directives
• Global optimization guidelines (at most one)

• Applies to all statements for which profile is in effect

• E.g. eligible MQTs guideline defining MQTs to be considered for routing
• Statement-level optimization guidelines (zero or more)

• Applies to a specific statement for which profile is in effect

• Specifies aspects of desired execution plan

© 2011 IBM Corporation34

Sample optimization profile
<?xml version="1.0" encoding="UTF-8"?>
<OPTPROFILE VERSION=“9.7.0">
<!--

Global optimization guidelines section.
Optional but at most one.

-->
<OPTGUIDELINES>

<MQT NAME=“DBA.AvgSales"/>
<MQT NAME=“DBA.SumSales"/>

</OPTGUIDELINES>
<!--

Statement profile section.
Zero or more.

-->
<STMTPROFILE ID="Guidelines for TPCD Q9">

<STMTKEY SCHEMA="TPCD">
<![CDATA[SELECT S.S_NAME, S.S_ADDRESS, S.S_PHONE,

S.S_COMMENT FROM PARTS P, SUPPLIERS S, PARTSUPP PS
WHERE P_PARTKEY = PS.PS_PARTKEY AND S.S_SUPPKEY = PS.PS_SUPPKEY AND P.P_SIZE = 39
AND P.P_TYPE = ’BRASS’ AND S.S_NATION = ’MOROCCO’ AND S.S_NATION IN (’MOROCCO’, ’SPAIN’)
AND PS.PS_SUPPLYCOST = (SELECT MIN(PS1.PS_SUPPLYCOST) FROM PARTSUPP PS1, SUPPLIERS S1
WHERE P.P_PARTKEY = PS1.PS_PARTKEY AND S1.S_SUPPKEY = PS1.PS_SUPPKEY AND
S1.S_NATION = S.S_NATION)]]>

</STMTKEY>
<OPTGUIDELINES>

<IXSCAN TABID="Q1" INDEX="I_SUPPKEY"/>
</OPTGUIDELINES>

</STMTPROFILE>
</OPTPROFILE>

© 2011 IBM Corporation35

Putting an optimization profile into effect

Create the OPT_PROFILE table in the SYSTOOLS schema:

CALL SYSPROC.SYSINSTALLOBJECTS(‘OPT_PROFILES', 'C',
CAST (NULL AS VARCHAR(128)), CAST (NULL AS VARCHAR(128)))

Prior to DB2 9.5:
CREATE TABLE SYSTOOLS.OPT_PROFILE (

SCHEMA VARCHAR(128) NOT NULL,
NAME VARCHAR(128) NOT NULL,
PROFILE BLOB (2M) NOT NULL,

PRIMARY KEY (SCHEMA, NAME));

• Compose document, validate, insert into table with qualified name
Inserts inventory_db.xml from current directory into the SYSTOOLS.OPT_PROFILE table with
qualified name

File profiledata:
“DBA”,”INVENTDB”,”inventory_db.xml”

IMPORT FROM profiledata OF DEL MODIFIED BY LOBSINFILE
INSERT INTO SYSTOOLS.OPT_PROFILE;

© 2011 IBM Corporation36

Putting an optimization profile into effect (cont.)

• At the package level using the optprofile bind option

• In DB2 9.7 use ALTER PACKAGE:
• ALTER PACKAGE DB2USER.EMPADMIN OPTIMIZATION PROFILE

DB2USER.JOINHINT

db2 prep inventapp.sqc bindfile optprofile DBA.INVENTDB

db2 bind inventapp.bnd

• At the dynamic statement level: using current optimization
profile special register

EXEC SQL SET CURRENT OPTIMIZATION PROFILE = �DBA.INVENTDB';

EXEC SQL PREPARE stmt FROM SELECT ... ; EXEC SQL EXECUTE stmt;

EXEC SQL EXECUTE IMMEDIATE SELECT ... ;

EXEC SQL SET CURRENT SCHEMA = �JON';

EXEC SQL SET CURRENT OPTIMIZATION PROFILE = 'SALES';

EXEC SQL EXECUTE IMMEDIATE SELECT ... ;

© 2011 IBM Corporation37

Optimization Guidelines

• Access path guidelines
• Base access request

• Method to access a table e.g. TBSCAN, IXSCAN
• Join request

• Method and sequence for performing a join e.g. HSJOIN,
NLJOIN, MSJOIN

• IXAND star joins

• Query rewrite guidelines
• IN-list to join
• Subquery to join
• NOT EXISTS subquery to anti-join
• NOT IN subquery to anti-join

• General optimization guidelines
• REOPT (ONCE/ALWAYS/NONE)
• DEGREE
• QUERYOPT
• RTS
• MQT choices

© 2011 IBM Corporation47

Putting an optimization profile into effect

Clearing the special register:

EXEC SQL SET CURRENT OPTIMIZATION PROFILE = NULL;

EXEC SQL PREPARE stmt FROM SELECT ... ; EXEC SQL EXECUTE stmt;

EXEC SQL SET CURRENT OPTIMIZATION PROFILE = ��;

EXEC SQL PREPARE stmt FROM SELECT ... ; EXEC SQL EXECUTE stmt;

• At the dynamic statement level: using db2_optprofile
CLI option

[SANFRAN]
DB2_OPTPROFILE JON.SALES

© 2011 IBM Corporation48

Putting an optimization profile into effect

• SQL procedures

CALL SET_ROUTINE_OPTS(�OPTPROFILE DBA.INVENTDB �) %

CREATE PROCEDURE MY_PROC
BEGIN

DECLARE CUR1 CURSOR FOR SELECT ...
END %

• SQL may be modified during CREATE PROCEDURE processing
• Use explain facility or query system catalogs to get modified SQL statements to include in

optimization profile STMTKEY element for profile statement matching

SELECT STMTNO, SEQNO, SECTNO, TEXT
FROM SYSCAT.STATEMENTS AS S,

SYSCAT.ROUTINEDEP AS D,
SYSCAT.ROUTINES AS R

WHERE PKGSCHEMA = BSCHEMA
AND PKGNAME = BNAME;
AND BTYPE = 'K'
AND R.SPECIFICNAME = D.SPECIFICNAME
AND R.ROUTINESCHAME = D.ROUTINESCHEMA
AND ROUTINENAME = ?
AND ROUTINESCHEMA = ?
AND PARM_COUNT = ?

ORDER BY STMTNO

• STMNO should be the line number in the source code of the CREATE PROCEDURE,
relative to the beginning of the procedure statement (line number 1)

© 2011 IBM Corporation49

Table references in views

• Example
CREATE VIEW “DBGuy".V1 as (SELECT * FROM EMPLOYEE A WHERE SALARY >

50,000) ;

CREATE VIEW DB2USER.V2 AS (SELECT * FROM “DBGuy".V1 WHERE DEPTNO
IN (’52’, ’53’,’54’) ;

SELECT * FROM DB2USER.V2 A WHERE V2.HIRE_DATE > ’01/01/2004’ ;

<OPTGUIDELINES><IXSCAN TABLE=’A/“DBGuy".V1/A’/></OPTGUIDELINES>

Extended syntax allows unambiguous table references in views
‘A’ is ambiguous

Extended name consists of exposed names in the path from the statement
reference to the nested reference separated by slashes
Same rules for exposed names apply to extended syntax

© 2011 IBM Corporation50

Table references in views

• Extended syntax is not necessary if references are
unique with respect to all table references in the
query

• Example
CREATE VIEW “DBGuy".V1 as (SELECT * FROM EMPLOYEE E WHERE SALARY >

50,000) ;

CREATE VIEW DB2USER.V2 AS (SELECT * FROM “DBGuy".V1 WHERE DEPTNO
IN (’52’, ’53’,’54’) ;

SELECT * FROM DB2USER.V2 A WHERE V2.HIRE_DATE > ’01/01/2004’ ;

<OPTGUIDELINES><IXSCAN TABLE=‘E’/></OPTGUIDELINES>

© 2011 IBM Corporation51

Ambiguous table references

• Example
CREATE VIEW V1 AS

(SELECT * FROM EMPLOYEE WHERE SALARY >
(SELECT AVG(SALARY) FROM EMPLOYEE);

SELECT * FROM V1 WHERE DEPTNO IN (’M62’, ’M63’) ;
<OPTGUIDELINES><IXSCAN TABLE=’V1/EMPLOYEE’/></OPTGUIDELINES>

Which EMPLOYEE reference?
The IXSCAN request is ignored
Uniquely identify EMPLOYEE by adding correlation names in the view
Use TABID

Correlation names in the optimized SQL are always unique

